首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15576篇
  免费   3199篇
  国内免费   2704篇
化学   9294篇
晶体学   172篇
力学   1437篇
综合类   145篇
数学   1361篇
物理学   9070篇
  2024年   34篇
  2023年   205篇
  2022年   347篇
  2021年   520篇
  2020年   716篇
  2019年   547篇
  2018年   541篇
  2017年   601篇
  2016年   712篇
  2015年   645篇
  2014年   910篇
  2013年   1397篇
  2012年   969篇
  2011年   1058篇
  2010年   919篇
  2009年   1120篇
  2008年   1123篇
  2007年   1151篇
  2006年   1114篇
  2005年   870篇
  2004年   795篇
  2003年   739篇
  2002年   601篇
  2001年   528篇
  2000年   492篇
  1999年   418篇
  1998年   348篇
  1997年   280篇
  1996年   249篇
  1995年   232篇
  1994年   197篇
  1993年   149篇
  1992年   124篇
  1991年   129篇
  1990年   85篇
  1989年   83篇
  1988年   75篇
  1987年   64篇
  1986年   60篇
  1985年   57篇
  1984年   41篇
  1983年   22篇
  1982年   35篇
  1981年   34篇
  1980年   29篇
  1979年   28篇
  1978年   12篇
  1977年   21篇
  1976年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
正癸烷与二甲苯在超临界压力下的热裂解   总被引:1,自引:0,他引:1  
采用连续流动装置对正癸烷和二甲苯在超临界压力下的热裂解对比研究. 用气相色谱和色质联用仪对其气相产物和液相产物进行分析, 计算气相产物产率和裂解转化率, 并运用计算化学方法获得正癸烷和二甲苯不同化学键的键能, 从实验和理论上分析其裂解反应的难易程度和裂解规律. 实验结果表明, 在4 MPa和650、700、750 ℃条件下, 正癸烷比二甲苯更容易裂解, 正癸烷裂解产物以C1-C3小分子的烃类和氢气为主, 而二甲苯裂解产物主要为乙苯、甲苯和其它芳香类化合物; 键能计算结果表明, 正癸烷碳链骨架的C-C键能和C-H键能均较小, 裂解反应的诱发步骤应该是C-C键断裂, 而二甲苯苯环上C-C和C-H键能均较大, 裂解诱发步骤应该是侧链甲基脱氢反应. 因此正癸烷裂解反应以C-C键断裂和脱氢反应为主, 二甲苯裂解主要发生侧链甲基C-C键断裂和脱氢反应, 而芳环则比较稳定, 理论计算键能分析与裂解实验结果一致.  相似文献   
992.
采用分子动力学方法研究激酶ABL 与ATP 位点小分子imatinib、P16 及变构位点小分子STJ、MS7、MS9、3YY、MYR等的结合, 并用GBSA (generalized Born surface area)方法将结合自由能分解到各残基. 自由能计算结果表明, 小分子STJ、MS7、MS9 有利于imatinib 与ABL 结合; 小分子STJ、MS7、MS9 与激酶ABL的结合自由能接近, 绝对值均大于ABL 与3YY、MYR 的结合自由能. 能量分解表明, ABL 残基ILE502、VAL506、LEU510与STJ和MYR的相互作用是αI 螺旋处于弯曲状态的重要原因. 模拟过程中ABL肉豆蔻酰口袋残基均方根偏差(RMSD)变化值表明, STJ等小分子抑制剂与ABL结合后降低了肉豆蔻酰口袋残基的柔性.  相似文献   
993.
A series of panchromatic ruthenium sensitizers ( MJ sensitizers) with attached thiophene and phenyl units bearing alkyl chains was synthesized. A new synthetic route was used to examine all possible positions for the alkyl chains. The absorption spectra showed the sum of a ruthenium complex and peripheral organic chromophore units. The hypochromic effect and blueshift of the metal‐to‐ligand charge‐transfer band observed in the modified ruthenium sensitizers were suppressed by changing the positions of the alkyl chains on the attached thiophene ring. Changing only one alkyl chain also influenced the performance of dye‐sensitized solar cells. Ruthenium sensitizer MJ‐10 with bulky substituent harvests visible and near‐infrared light, and solar cells sensitized by MJ‐10 exhibit an efficiency of 9.1 % under 1 sun irradiation.  相似文献   
994.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   
995.
In the later stages of drug design projects, accurately predicting relative binding affinities of chemically similar compounds to a biomolecular target is of utmost importance for making decisions based on the ranking of such compounds. So far, the extensive application of binding free energy approaches has been hampered by the complex and time‐consuming setup of such calculations. We introduce the free energy workflow (FEW) tool that facilitates setup and execution of binding free energy calculations with the AMBER suite for multiple ligands. FEW allows performing free energy calculations according to the implicit solvent molecular mechanics (MM‐PB(GB)SA), the linear interaction energy, and the thermodynamic integration approaches. We describe the tool's architecture and functionality and demonstrate in a show case study on Factor Xa inhibitors that the time needed for the preparation and analysis of free energy calculations is considerably reduced with FEW compared to a fully manual procedure. © 2013 Wiley Periodicals, Inc.  相似文献   
996.
In the present study, the electronic energy transfer pathways in trimeric and hexameric aggregation state of cyanobacteria C‐phycocyanin (C‐PC) were investigated in term of the Förster theory. The corresponding excited states and transition dipole moments of phycocyanobilins (PCBs) located into C‐PC were examined by model chemistry in gas phase at time‐dependent density functional theory (TDDFT), configuration interaction‐singles (CIS), and Zerner's intermediate neglect of differential overlap (ZINDO) levels, respectively. Then, the long‐range pigment‐protein interactions were approximately taken into account by using polarizable continuum model (PCM) at TDDFT level to estimate the influence of protein environment on the preceding calculated physical quantities. The influence of the short‐range interaction caused by aspartate residue nearby PCBs was examined as well. Only when the protonation of PCBs and its long‐ and short‐range interactions were properly taken into account, the calculated energy transfer rates (1/K) in the framework of Förster model at TDDFT/B3LYP/6‐31+G* level were in good agreement with the experimental results of C‐PC monomer and trimer. Furthermore, the present calculated results suggested that the energy transfer pathway in C‐PC monomer is predominant from β‐155 to β‐84 (1/K = 13.4 ps), however, from α‐84 of one monomer to β‐84 (1/K = 0.3–0.4 ps) in a neighbor monomer in C‐PC trimer. In C‐PC hexamer, an additional energy flow was predicted to be from β‐155 (or α‐84) in top trimer to adjacent β‐155 (or α‐84) (1/K = 0.5–2.7 ps) in bottom trimer. © 2013 Wiley Periodicals, Inc.  相似文献   
997.
998.
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA‐binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008 , 456, 459] involving two conformational states (“OPEN” and “CLOSED”) of GID1. According to the new perception mechanism, GA acts as a “conformational stabilizer,” rather than the previously speculated “allosteric inducer,” to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism‐based rational design of novel, potent growth regulators that target crops and ornamental plants. © 2013 Wiley Periodicals, Inc.  相似文献   
999.
A new approach Procedure for Investigating Categories of Vibrations (PICVib) for estimating vibrational frequencies of selected modes using only the structure and energy calculations at a more demanding computational level is presented and explored. The PICVib has an excellent performance at only a small fraction of the computational demand required for a complete analytical calculation. The errors are smaller than ca. 0.5% when DFT functionals are combined with high level ab initio methods. The approach is general because it can use any quantum chemical program and electronic structure method. It is very robust because it was validated for a wide range of frequency values (ca. 20–4800 cm–1) and systems: XH3 (D3h) with X = B, Al, Ga, N, P, As, O, S, and Se, YH4 (D4h) with Y = C, Si, and Ge, conformers of RDX, SN2 and E2 reactions, [W(dppe)2(NNC5H10)] complex, carbon nanotubes, and hydrogen‐bonded complexes including guanine‐cytosine pair. © 2012 Wiley Periodicals, Inc.  相似文献   
1000.
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X‐ray, NMR, and cryo‐electron microscopy, and theoretical/mathematical models, such as molecular dynamics, the Poisson–Boltzmann equation, and the Nernst–Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger's functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent–solute interaction, and ion channel dynamics, whereas our coarse resolution representations highlight the compatibility of protein‐ligand bindings and possibility of protein–protein interactions. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号